100% Secure Shopping

Studio equipment

Our full range of studio equipment from all the leading equipment and software brands. Guaranteed fast delivery and low prices.

Visit Juno Studio

100% Secure Shopping

DJ equipment

Our full range of DJ equipment from all the leading equipment and software brands. Guaranteed fast delivery and low prices.Visit Juno DJ

View:
Options
Items 1 to 20 of 20 on page 1 of 1
Notes: The A-100LC1v is a smaller version of the A-100LC3 with 48 HP of space. It is made out of raw wood, a black coating gives the Eurorack frame a vintage look. The built-in power supply, type A-100SSB, delivers up to 380 mA at +12 V and -12 V as well as 100 mA at +5 V.

The A-100LC1v comes equipped with one 48 HP measuring row for 3U modules. Its power supply features eight connectors for oscillators, filters and so forth. The case is connected to the grid via an IEC power socket.
Read more
 2 in stock $139.33
Click for better price!
quote 743113
Cat: 745794 Rel: 10 Sep 19 • View all Synth modules
 
3-way logic module featuring two internal signal inverters - 8HP
Notes: Dual logic module with 3 inputs for each unit. The logical states of the inputs ("1" = high / "0" = low) are linked together in 3 ways: AND, OR, EXOR (exclusive OR). The three functions are available simultaneously at three outputs with LED display of the output states.

Additionally, two inverters are available to obtain the inverted functions NAND, NOR and NEXOR. The sockets of each triple unit are "normalized", i.e. the switched contact of socket 2 is connected to input 1 and the switched contact of socket 3 is connected to input 2. Provided that no plug is inserted into socket 1 resp. socket 2 the socket is connected to the input above it. This simplifies the usage of the module when only 2 signals are combined, e.g. the logic functions AND and OR have different neutral input levels ("1" is the neutral state for AND, "0" is the neutral state for OR).

In case of a fixed input level for the unused input one of the functions (AND or OR) would work no longer.

Applications: combination of digital signals of the A-100 (e.g. gates, clocks, triggers), e.g. to obtain "gated" clocks or certain rhythmic patterns.
Read more
 1 in stock $104.76
Click for better price!
quote 745794
Cat: 745792 Rel: 10 Sep 19 • View all Synth modules
 
Dual trigger modifier, consisting of two trigger inverters for gate, clock or trigger signals - 4HP
Notes: Module A-165 (Dual Trigger Modifier) contains two separate trigger modifiers, to use with logical/digital levels (gate, clock, trigger). Each half of the module enables signals generated by the A-100 to communicate with other instruments (such as an external sequencer) or is simply used where you want to reverse a trigger polarity.

Whatever signal is patched into the input, inverted by the module, and fed out of the Inv. Out (inverted output) socket. At the same time, a trigger signal of roughly 50 ms is generated every time an edge of the trigger pulse is sensed (negative as well as positive). This trigger signal is available at the +/- output.

Two LEDs act as indicators showing the level of signal available at the two outputs.

When both units are daisy-chained the module can be used as level shifter for gate/trigger/clock signals (from min. +2,5V up to +12V)
Read more
 1 in stock $58.67
Click for better price!
quote 745792
Cat: 745778 Rel: 10 Sep 19 • View all Synth modules
 
Two independent voltage controlled switches in one module - 4HP
Notes: Module A-150-1 (Dual VCS) contains two separate voltage-controlled switches.

Each switch has a control voltage input, a common Out / Input, and two In / Outputs. The switches are bi-directional: they can work in both directions, so can connect one input to either of two outputs, or either of two inputs to one output. Voltages in the range -8V...+8V at the O/I resp. I/O sockets can be processed by the module.

Two LEDs show which in / output is active (i.e. which is connected to the common out / input).
Read more
 2 in stock $52.37
Click for better price!
quote 745778
Cat: 745782 Rel: 09 Sep 19 • View all Synth modules
 
Controller unit for the A-155 sequencer
Notes: Module A-154 is a supplement to the A-155 Analog/Trigger Sequencer module. It offers a lot of new features that are not available in the basic control unit of the A-155. The A-154 is used to replace the control unit of one or two A-155, i.e. the section marked "Control" with Start / Stop / Step / Reset buttons and inputs in the upper left corner of the A-155 front panel. If the A-154 is used to control the A-155 the control section of the A-155 is put out of action.

These are the features of the A-154:

Several running modes: forward, backward, pendulum, random, CV controlled step addressing. All modes are available as loop or one-shot.

LED display of the 5 different current modes and one LED for loop/one-shot display

Manual and voltage controlled selection (with attenuator) of the running mode. If no external control voltage is applied one of the 10 modes (5 modes x 2 loop/one-shot) is simply selected with a rotary knob. The CV input with attenuator is used to modulate the running mode with an external control voltage (digital high/low CV to switch between two modes or continuous analogue CV to sweep through different modes). With the combination of manual control and CV with attenuator it is possible e.g. to use only two neighbouring modes (e.g. forward/backward) or sweep through all possible running modes

Manual and voltage controlled selection (with attenuator) of first and last step of the sequence. The range is step 1...8 in 8 step mode resp. 1...16 in 16 step mode

If the running mode "CV Controlled Step Address" is selected the First Step section is used to determine the active sequencer step. Consequently manual and voltage controlled selection (with attenuator) of the active step is possible: the active step can be set by hand with the first step manual control and then modulated by an external control voltage (e.g. LFO, Random, S&H, Theremin, Light CV source, Joy Stick) at the first step CV input (with attenuator).

An internal voltage controlled clock generator with manual and CV control (with attenuator) is available. The output of the clock generator is displayed with a LED and is used as sequencer clock provided that no external clock signal is connected to the Clock In socket (normalled socket). If the CV input of the Clock section is connected to one of the analogue outputs of the sequencer the time for each step can be set separately. Even jumps (or skipping) will be possible as we will introduce the feature that a very short clock pulse will be generated if the control voltage exceeds a certain value. For example the gate row of the A-155 can be used to obtain skipping of steps: the gate output simply has to be connected to the CV input of the A-154 clock generator. If the corresponding switch of the A-155 is set correspondingly in the gate row the step will be skipped.

Manual and voltage controlled (with attenuator) pulse width (PW) of the clock signal. This features can be used to obtain a different gate length for each step: e.g. one of the CV outputs of the A-155 can be used to control the PW. With a PW control voltage coming from a LFO/random/S&H the gate length will change automatically. CV coming from Theremin A-178, ribbon controller A-198, light controlled CV A-179, joy stick A-174 are other ways to control the gate length.

8/16 step mode: A toggle switch us used to select 8 or 16 steps. The "16 step" mode requires two A-155 and one or more voltage controlled switches (e.g. A-150-1 or A-150-8). The voltage controlled switches are controlled by the "A3" output of the A-154. This output remains "low" as long as the active step is in the range 1...8 and turns to "high" in the range 9...16. The voltage controlled switches are used to switch between the CV/trigger/gates outputs of the first A-155 (step 1...8) and the second A-155 (step 9...16). In the A-154 user's manual the corresponding patch is shown.

If two A-155 are used they can work in parallel (8 steps) or serial (16 steps). The 8/16 steps switch determines if the 8 step mode (one A-155 or two A-155 in parallel) or the 16 step mode (two A-155 serial) is chosen. Both modes work with CV controlled step addressing too (see below). In 8 step mode only the steps 1...8 are addressed, in 16 step mode the steps 1...16. For serial operation an additional VC switch (A-150) is required - as mentioned above.
Read more
 1 in stock $164.48
Click for better price!
quote 745782
Cat: 745783 Rel: 09 Sep 19 • View all Synth modules
 
Controller unit for the A-155 sequencer
Notes: Module A-154 is a supplement to the A-155 Analog/Trigger Sequencer module. It offers a lot of new features that are not available in the basic control unit of the A-155. The A-154 is used to replace the control unit of one or two A-155, i.e. the section marked "Control" with Start / Stop / Step / Reset buttons and inputs in the upper left corner of the A-155 front panel. If the A-154 is used to control the A-155 the control section of the A-155 is put out of action.

These are the features of the A-154:

Several running modes: forward, backward, pendulum, random, CV controlled step adressing. All modes are available as loop or one-shot.

LED display of the 5 different current modes and one LED for loop/one-shot display

Manual and voltage controlled selection (with attenuator) of the running mode. If no external control voltage is applied one of the 10 modes (5 modes x 2 loop/one-shot) is simply selected with a rotary knob. The CV input with attenuator is used to modulate the running mode with an external control voltage (digital high/low CV to switch between two modes or continuous analog CV to sweep through different modes). With the combination of manual control and CV with attenuator it is possible e.g. to use only two neighbouring modes (e.g. forward/backward) or sweep through all possible running modes

Manual and voltage controlled selection (with attenuator) of first and last step of the sequence. The range is step 1...8 in 8 step mode resp. 1...16 in 16 step mode

If the running mode "CV Controlled Step Address" is selected the First Step section is used to determine the active sequencer step. Consequently manual and voltage controlled selection (with attenuator) of the active step is possible: the active step can be set by hand with the first step manual control and then modulated by an external control voltage (e.g. LFO, Random, S&H, Theremin, Light CV source, Joy Stick) at the first step CV input (with attenuator).

An internal voltage controlled clock generator with manual and CV control (with attenuator) is available. The output of the clock generator is displayed with a LED and is used as sequencer clock provided that no external clock signal is connected to the Clock In socket (normalled socket). If the CV input of the Clock section is connected to one of the analog outputs of the sequencer the time for each step can be set separately. Even jumps (or skipping) will be possible as we will introduce the feature that a very short clock pulse will be generated if the control voltage exceeds a certain value. For example the gate row of the A-155 can be used to obtain skipping of steps: the gate output simply has to be conneted to the CV input of the A-154 clock generator. If the corresponding switch of the A-155 is set correspondingly in the gate row the step will be skipped.

Manual and voltage controlled (with attenuator) pulse width (PW) of the clock signal. This features can be used to obtain a different gate length for each step: e.g. one of the CV outputs of the A-155 can be used to control the PW. With a PW control voltage coming from a LFO/random/S&H the gate length will change automatically. CV coming from Theremin A-178, ribbon controller A-198, light controlled CV A-179, joy stick A-174 are other ways to control the gate length.

8/16 step mode: A toggle switch us used to select 8 or 16 steps. The "16 step" mode requires two A-155 and one or more voltage controlled switches (e.g. A-150-1 or A-150-8). The voltage controlled switches are controlled by the "A3" output of the A-154. This output remains "low" as long as the active step is in the range 1...8 and turns to "high" in the range 9...16. The voltage controlled switches are used to switch between the CV/trigger/gates outputs of the first A-155 (step 1...8) and the second A-155 (step 9...16). In the A-154 user's manual the corresponding patch is shown.

If two A-155 are used they can work in parallel (8 steps) or serial (16 steps). The 8/16 steps switch determines if the 8 step mode (one A-155 or two A-155 in parallel) or the 16 step mode (two A-155 serial) is chosen. Both modes work with CV controlled step addressing too (see below). In 8 step mode only the steps 1...8 are addressed, in 16 step mode the steps 1...16. For serial operation an additional VC switch (A-150) is required - as mentioned above.

The functions of the Start/Stop/Step/Reset buttons and inputs are the same as for the "old" control unit of the A-155:

A high level at the Start input or operating the Start button starts the sequence from the momentarily addressed step. Not working in "CV controlled step address" mode.

A high level at the Stop input or operating the Stop button stops the sequence (the last active step remains addressed). Not working in "CV controlled step address" mode.
Read more
 1 in stock $158.19
Cat: 745775 Rel: 10 Sep 19 • View all Synth modules
 
Two sample & hold units in one module for generating stepped random voltages or slicing signals
Notes: Module A-148 (Dual S&H) has two identical sample & hold modules, designed to produce 'staircase' voltages. The signal present at the sample input is sampled at a rate set by the signal at the trigger input, and held at that voltage at the S&H output.

The exact shape of the staircase depends on the sort of waveform at the sample input: NOISE or RANDOM signals produce random patterns; an LFO produces rising or falling staircase patterns.

Two LEDs for each S&H indicate the voltage (positive or negative) of the sampled signal.
Read more
 1 in stock $67.04
Click for better price!
quote 745775
Cat: 745776 Rel: 09 Sep 19 • View all Synth modules
 
12HP random voltage generator for Eurorack, with 4 CV outputs
Notes: Module A-149-1 is the first module of the A-149-x range. In this group we present by popular request several functions of Don Buchla's "Source of Uncertainty 265/266" (SOU) modules that cannot be realized with existing A-100 modules. Many functions of Buchla's 265 and 266 SOU can be realized with existing A-100 modules. For details please refer to A-100 patch examples.

Module A-149-1 has available four different analogue random control voltages that are generated in different ways.

The "Quantized Random Voltages" section has available 2 CV outputs: "N+1 states" and "2N states". N is an integer number in the range 1...6 that can be adjusted with the manual control (Man N) and an external control voltage CVN with attenuator. Whenever the rising edge of the input clock signal (Clk In) appears a new random voltage is generated at the N+1 resp. 2N output. The N+1 output is capable to generate N+1 different voltage levels (or states), the 2N output up to 2N different states. If for example N is set to 4 the N+1 output generates up to 5, the 2N output 16 different states. The voltage steps of the 2N output are adjusted to 1/12 V in the factory. Consequently, exact semitones can be obtained in combination with a VCO. The voltage steps of the n+1 output are adjusted to 1.0 V in the factory corresponding to octave intervals in combination with a VCO. For each output a trimming potentiometer is available on the pc board that enables the user to select other voltage steps for the output in question.

Even the "Stored Random Voltages" section has 2 stepped CV outputs available: one with even voltage distribution of the max. 256 output states and second one with adjustable voltage distribution probability. The distribution probability is adjusted by a manual control (Man D) and an external control voltage CVD with attenuator. With the control set fully counter-clockwise most of the random voltages will be low magnitude but even medium and high magnitude voltages may appear but with smaller probability. As the control is turned to the right (or a positive control voltage appears at the CVD input) the distribution moves through medium to high magnitude voltage probability. The symbol at the lower jack socket shows this coherence graphically. The voltage range is 0...+5V for both outputs of the "Stored Random Voltages" section. For each output a trimming potentiometer is available on the pc board that enables the user to select another voltage range for the output in question.

The A-149-1 can be extended by 8 random digital voltages with the A-149-2 Digital Random Voltages module.
Read more
 2 in stock $103.71
Click for better price!
quote 745776
Cat: 745777 Rel: 10 Sep 19 • View all Synth modules
 
Expansion module to the A-149-1
Notes: A-149-2 is an extension module for A-149-1. It makes available 8 digital random voltages (i.e. only low/high states like a gate signal). The outputs are controlled by the "Quantized Random Voltages" section of the assigned A-149-1 and correspond to the 8 digital outputs of the shift register that is used to generate the Quantized Random Voltages. As the alteration of the A-149-2 outputs is clock controlled by the Clk In of the "Quantized Random Voltages" section of the A-149-1 the A-149-2 can be used to create random rhythmical sequences.

The A-149-2 requires the A-149-1 and has to be mounted directly to the left or right of the A-149-1 as an internal ribbon cable connection has to be established between A-149-1 and A-149-2.
Read more
 1 in stock $54.48
Click for better price!
quote 745777
Cat: 745781 Rel: 09 Sep 19 • View all Synth modules
 
Complex switch/multiplexer unit - 16HP
Notes: Module A152 is a very useful switching and T&H module. It combines a voltage addressed 1-to-8 multiplexer and 8 fold T&H that can be used as kind of an analogue shift register too. The active in/output is displayed by a LED. The digital output of the currently addressed step outputs "high". The remaining digital outputs are low.

Instead of voltage control even clock/reset controlled addressing of the active step is possible. The rising edge of each clock signal causes an advance to the next state. The rising edge of the reset signal resets to step 1.

The sum of the voltages coming from the manual Address control and the CV input define the currently addressed step of the 3 sub-devices. If the module is controlled by clock and reset the control voltage has to remain unchanged as the CV control has priority over the clock/reset control (e.g. simply turn the CV control fully counter-clockwise and do not touch the Address control knob).

Sub-device #1 is the bidirectional 8-fold multiplexer (kind of an electronical 8-fold rotary switch). Bidirectional means that it works into both directions like a mechanical rotary switch: the common socket may work as an output that is connected to one of the 8 inputs that are e.g. connected to modulation or audio sources. But the common socket may even function as input. In this case the signal applied to the common socket is output to the currently addressed single socket. The voltage range of the in/outputs to be switched is the full A-100 voltage range -12V....+12V. All A-100 signals can be switched without any restrictions.

Sub-device #2 is the addressed 8-fold T&H. The signal at the common T&H input is connected to the addressed T&H output. As soon as a new output is addressed the last voltage is stored at the output (Track&Hold function). The T&H section of the A-152 allows the emulation of the "toggling T&H" function of the Buchla module 266 "Source of Uncertainty". Only the first two T&H outputs of the A-152 are required for this application. This unit can be used also as kind of an analogue (shift) register. The difference to a "real" analogue shift register is that the sampled output voltages are not shifted to the next output but remain allocated to the same output. But in some cases (e.g. controlling the pitch of 3 VCOs by 3 output voltages of the A-152) the result is the same.

Sub-device #3 is the digital output section. The digital output of the currently addressed turns to "high". All other digital outputs are low. The digital outputs can be used to trigger e.g. envelope generators or to control the reset input in the clocked mode to reduce the number of addressed stages.
Read more
 1 in stock $121.52
Cat: 577765 Rel: 10 Sep 19 • View all Synth modules
 
Frequency divider for clock, trigger & gate signals - 4HP
Notes: Module A-160 is a frequency divider for clock/trigger/gate signals, designed to be a source of lower frequencies, particularly for rhythm uses. The Trigger input will take clock signals from, e.g. an LFO, MIDI sync, or the gate from a MIDI-CV interface.

At the outputs, you have access to the sub-divided clock signals, from half the clock frequency down to 1/64. The low/high levels of the output signals are 0V and about +10V.

The A-160 also has a reset input. Whenever a reset signal is sensed, all outputs are set to zero, until the reset voltage disappears.

The Clock Divider can be used in combination with the A-161 Clock Sequencer to produce stepped sequences with a length of from one to eight events.
Read more
 1 in stock $69.14
Click for better price!
quote 577765
Cat: 577759 Rel: 10 Sep 19 • View all Synth modules
 
Additional 4HP module for the A-160
Notes: Module A-161 is an eight-step Clock Sequencer which is internally connected to the Clock Divider (A-160). Eight outputs are sequentially switched by the clock signals from the A-160 (see Fig. 1) and can act, for instance, as sequential rhythmic triggers for an envelope. The reset on the A-160 also works on the A-161 (instant return to Step 1). The low/high levels of the output signals are 0V and about +10V. In combination with a mixer (A-138) short analogue sequences can be generated. Our MIDI-Analog-Sequencer MAQ16/3 is suitable for MIDI-controlled analogue sequences up to 48 steps. A "real" analogue sequencer with 8 steps is the A-155.
Read more
 1 in stock $61.80
Click for better price!
quote 577759
Cat: 745785 Rel: 10 Sep 19 • View all Synth modules
 
Dual quantizer for CV's, converting a continuous positive input voltage into a stepped output voltage - 8HP
Notes: Module A-156 is a Dual Control Voltage Quantizer. A quantizer converts a continuous control voltage in the range 0...+10V into a stepped output voltage in the same voltage range (i.e. only certain voltages occur). Normally 1/12 V steps are used to obtain semitone steps. Quantizer 2 of the A-156 allows has more sophisticated quantizing modes like major scale (i.e. only voltages corresponding to the major scale), minor scale, major chord, minor chord, fundamental + fifth and addition of seventh or sixth when chords are selected. Only those voltages appear at the CV output which comply with the selection rule (e.g. minor chord with seventh). The mode setting of quantizer 2 is done with 3 switches (1-0-1 type with middle position). From the factory quantizer 1 is working in the semitone mode. But there is a jumper on the pc board that can be changed so that even quantizer 1 uses the same scale as quantizer 2.

For each quantizer the following in/outputs are available:

- Control voltage input (CV In): The input for the continuous voltage to be quantized
- Control voltage output (CV Out): The output of the quantized voltage
- Trigger input (Trig.In): If this jack is left open the quantizer is working permanently. If a rectangle voltage is applied quantisation happens only at the rising edge of the signal (e.g. from an LFO or MIDI-to-Sync interface). Thus the quantizing can be synchronized with other events
- Trigger output (Trig.Out): Whenever a quantisation happens (i.e. a new voltage is generated at the CV Out) a positive pulse occurs at this output. It may be used to trigger an envelope generator (ADSR) or for triggering other modules (sequential switch A-151, trigger divider/sequencer A-160/161, trigger delay A-162, ...). If none of these functions are used the jack is left open

On top of that the A-156 is provided with a common transpose CV input having an additive effect on both quantizers. This input is quantized in semitone steps. A typical application is the transposition of a sequence generated by the A-155 by a second control voltage (e.g. coming from the MIDI-CV interface A-190).

Typical applications:

- Quantizing the CV sequence generated by an A-155 (semitone, only major scale, only minor scale and so on)
- Quantizing the voltage coming from the Trautonium Manual / Ribbon Controller A-198, Theremin A-178 or Light-to-CV module A-179 to get accurate semitones or major/minor scale tones
- Arpeggio-like effects with LFO, random, noise, envelope generators as CV sources (for negative or symmetrical voltages an offset must be added, e.g. with the offset/attenuator module A-129-3, to obtain positive voltages for the A-156 input)
Read more
 1 in stock $113.14
Cat: 745789 Rel: 10 Sep 19 • View all Synth modules
 
Voltage-controlled clock multiplier with CV or manual control - 4HP
Notes: Module A-160-5 is a voltage controlled clock multiplier. The incoming clock signal (socket Clock In) is multiplied by a factor that depends upon the control voltage on socket CV In (0...+5V) and the position of the Mode switch. The multiplied clock signal is available at the socket Clock Out. According to the position of the Mode switch different clock multiplying factors are assigned to the control voltage. With 0V CV no clock output is generated. This state is indicated by "all LEDs off". With increasing CV integer factors (left position of the mode switch), power of two factors (middle position) or a mix of both (right position) are obtained. Nine LEDs are used to show the currently selected multiplying factor. In addition two LEDs are used to display the incoming and outgoing clock signal.

A manual control is used to adjust the clock multiplication factor manually without the need of an external control voltage. The voltage generated by this control ("Manual") is normalled to the CV In socket. As long as no plug is inserted into the CV In socket the clock multiplication factor is adjusted by means of the manual control knob and displayed by the LEDs. For dynamic applications (like the ratcheting function described below) the manually generated CV is overwritten by the external CV which has to be fed into the CV In socket.

The module can be used for all kind of clock multiplying applications. One important example is the generation of so-called ratcheting sequences. The band Tangerine Dream is famous for this kind of sequences. A normal sequencer generates only one gate signal per step. A ratcheting sequence may have also more than one gate pulses per step. This function can be obtained by using the A-160-5: one CV output of the sequencer is used to define the number of gate pulses per step. If the control of the step in question is fully CCW the generated CV is 0V and no gate signal is generated (mute of the step). When the control of the step in question is turned clockwise one, two or more gate pulses are generated depending upon the position of the mode switch and the voltage generated by the CV at this step.

Technical note: Due to the nature of clock multiplying it takes a few input clock pulses until the clock output is stable. One has to average a few input clock pulses to generate the multiplied clock output signal. Even when the input clock frequency changes it will take a few cycles until the output clock signal is correct as the module cannot foresee the future of the clock input signal. The generated clock output signal is derived from the last few cycles of the clock input signal. Consequently the module should be driven only by a clock signal with constant or slowly changing frequency.
Read more
 1 in stock $99.52
Click for better price!
quote 745789
Cat: 745790 Rel: 10 Sep 19 • View all Synth modules
 
8HP dual trigger delay for Eurorack
Notes: Module A-162 contains two identical circuits that generate a trigger signal with adjustable delay and length from an incoming rectangle signal (e.g. gate, trigger, rectangle output of an LFO or VCO). The rising edge of the incoming signal is used to trigger the new trigger signal. This module makes it possible to delay the onset of a trigger pulse, and also change its length.

On each of the two units, two controls can alter the onset time and duration of triggers, from about 2 ms up to more than 10 seconds. A control LED shows the generated signal.
Read more
 2 in stock $61.80
Click for better price!
quote 745790
Cat: 745784 Rel: 09 Sep 19 • View all Synth modules
 
Analogue sequencer for CV's & trigger/gates
Notes: The Doepfer A-155 has two CV rows, each with selectable voltage range, glide and sample & hold options. Three trigger rows and a one gate row. Logic inputs for clock, reset, start and stop. It's even possible to insert external signals per step instead, overriding the CV generated by the 2nd row's potentiometer. The A-155's functions can be expanded by the A-154 Sequencer Controller, as it's an entire control unit with step number limitation, voltage controllable clock generator, variable gate length and a number of playback modes.

Features of the analogue rows (knobs):

- 8 potentiometers (knobs)
- Lower row: Scale (knob), voltage output range 0 ... ~ +6,5V
- Upper row: 1V/2V/4V (octave range switch for exact VCO control), voltage output ranges 0 ...1.0V / 0 ...2.0V / 0 ...4.0V
- Glide time (knob), same as portamento or slew limiter
- Glide Control (control input for switching glide on/off)
- S&H Control (control input for internal S&H, works like A-148)
- Pre Glide/S&H-Out (analogue output before S&H and glide unit, especially required when external audio signals are used as inputs of the lower row)
- Post Glide/S&H-Out (analogue output after S&H and glide unit)
- Lower row: external inputs for the 8 steps (switched jack sockets), control signals or audio signals may be used as inputs (allowed voltage range -5V...+12V), the knobs of the lower row are working in this case as attenuators

Features of the trigger rows (switches):

- 4 Trigger/Gate tracks with 2 rows of switches
- Toggle switches of 1-0-1 type (with middle position), which can be used to send a trigger/gate to the track above or below or to send no trigger/gate (middle position)
- 3 trigger rows (i.e. short pulse for each step set, pulse width corresponds to the pulse width of the clock/step input signal)
- 1 gate row (i.e. a high signal is applied during the length of the step set)

Control inputs and buttons:

- Step (defines the tempo of the sequence, same as clock or trigger input)
- Reset (resets all rows to step 1)
- Start (starts the sequence at the momentary position)
- Stop (stops the sequence at the momentary position)

Step and Reset are compatible to the MIDI interface A-190, i.e. in combination with the A-190 the A-155 may be synchronized via MIDI. The quantizing module A-156 can be used to quantize the infinite analogue voltages coming from A-155 into discrete semitone steps (multiples of 1/12V). Without MIDI interface e.g. a LFO rectangle output can be used to define the tempo of the sequence.

The sequencer controller A-154 adds a lot of new functions to the A-155 (e.g. voltage controlled addressing, forward/backward/pendulum/random mode, voltage control of first and last step, voltage controlled clock and gate length, step skipping, combination of several A-155 in parallel/serial mode and many more).
Read more
 1 in stock $309.05
Cat: 745786 Rel: 09 Sep 19 • View all Synth modules
 
52HP 8-channel, 16-step-button Eurorack step sequencer with breakout modules
Notes: A-157 is a trigger sequencer subsystem that generates eight trigger signals controlled by a 8x16 LED/button matrix (some customers call it "Miniature Schaltwerk" as it is based on the same matrix as the no longer available Schaltwerk).
The subsystem contains three modules:

A-157-1: 8 x 16 LED/button matrix and function addressing buttons/LEDs
A-157-2: Trigger Output module
A-157-3: Control Inputs module

The LED/button matrix module A-157-1 is the core of the subsystem. It is used to set or reset the trigger event on each of the 16 steps of each of the 8 rows. In addition the buttons and LEDs of the matrix are used for other functions too (like setting the first and last step of each row or addressing the preset memory).

The Trigger Output module A-157-2 outputs the 8 trigger signals and has an LED display for each trigger available.

The Control Inputs module A-157-3 has manual controls and trigger inputs available for the basic control functions start, stop, reset and clock. In addition four functions inputs are available which will be used in future firmware versions to assign these inputs to special functions (e.g. shifting a row left or right by means of an external gate/trigger signal or a second set of start, stop, reset and clock for individual rows).
Read more
 1 in stock $491.36
Click for better price!
quote 745786
Cat: 745787 Rel: 10 Sep 19 • View all Synth modules
 
Voltage-controlled clock multiplier with CV or manual control - 4HP
Notes: Module A-160-5 is a voltage controlled clock multiplier. The incoming clock signal (socket Clock In) is multiplied by a factor that depends upon the control voltage on socket CV In (0...+5V) and the position of the Mode switch. The multiplied clock signal is available at the socket Clock Out. According to the position of the Mode switch different clock multiplying factors are assigned to the control voltage. With 0V CV no clock output is generated. This state is indicated by "all LEDs off". With increasing CV integer factors (left position of the mode switch), power of two factors (middle position) or a mix of both (right position) are obtained. Nine LEDs are used to show the currently selected multiplying factor. In addition two LEDs are used to display the incoming and outgoing clock signal.

A manual control is used to adjust the clock multiplication factor manually without the need of an external control voltage. The voltage generated by this control ("Manual") is normalled to the CV In socket. As long as no plug is inserted into the CV In socket the clock multiplication factor is adjusted by means of the manual control knob and displayed by the LEDs. For dynamic applications (like the ratcheting function described below) the manually generated CV is overwritten by the external CV which has to be fed into the CV In socket.

The module can be used for all kind of clock multiplying applications. One important example is the generation of so-called ratcheting sequences. The band Tangerine Dream is famous for this kind of sequences. A normal sequencer generates only one gate signal per step. A ratcheting sequence may have also more than one gate pulses per step. This function can be obtained by using the A-160-5: one CV output of the sequencer is used to define the number of gate pulses per step. If the control of the step in question is fully CCW the generated CV is 0V and no gate signal is generated (mute of the step). When the control of the step in question is turned clockwise one, two or more gate pulses are generated depending upon the position of the mode switch and the voltage generated by the CV at this step.

Technical note: Due to the nature of clock multiplying it takes a few input clock pulses until the clock output is stable. One has to average a few input clock pulses to generate the multiplied clock output signal. Even when the input clock frequency changes it will take a few cycles until the output clock signal is correct as the module cannot foresee the future of the clock input signal. The generated clock output signal is derived from the last few cycles of the clock input signal. Consequently the module should be driven only by a clock signal with constant or slowly changing frequency.
Read more
 1 in stock $100.57
Click for better price!
quote 745787
Cat: 745791 Rel: 10 Sep 19 • View all Synth modules
 
Simple & effective voltage-controlled frequency divider - 8HP
Notes: Module A-163 is a voltage controlled audio frequency divider. The frequency of the input signal (preferably the rectangle output of a VCO) is divided by an integer factor N (N = 1, 2, 3, 4 ... up to 32). N can be adjusted manually and modulated with an external control voltage (e.g. from LFO, ADSR, Random, MIDI-to-CV, Theremin, Light-to-CV, analogue sequencer) with attenuator. The control input has polarizing function, i.e. the manually adjusted dividing factor can be modulated upwards or downwards. The basic idea of a polarizer is described in the modules A-133 Voltage Controlled Polarizer and A-138c Polarizing Mixer.

The output waveform is rectangle with 50% duty cycle. Unlike the A-115 with fixed dividing factors (2, 4, 8, 16) the dividing factor of the A-163 is voltage controlled and can be any integer value between 1 and about 20 (but only one output). In contrast to A-113 the dividing factor of the A-163 is voltage controlled and the output waveform is rectangle (the A-113 has 4 sawtooth outputs with 4 adjustable but not voltage controlled dividers).
Read more
 1 in stock $75.43
Click for better price!
quote 745791
Cat: 577757 Rel: 10 Sep 19 • View all Synth modules
 
Dual quantizer for CV's, converting a continuous positive input voltage into a stepped output voltage - 8HP
Notes: Module A-156 is a Dual Control Voltage Quantizer. A quantizer converts a continuous control voltage in the range 0...+10V into a stepped output voltage in the same voltage range (i.e. only certain voltages occur). Normally 1/12 V steps are used to obtain semitone steps. Quantizer 2 of the A-156 allows has more sophisticated quantizing modes like major scale (i.e. only voltages corresponding to the major scale), minor scale, major chord, minor chord, fundamental + fifth and addition of seventh or sixth when chords are selected. Only those voltages appear at the CV output which comply with the selection rule (e.g. minor chord with seventh). The mode setting of quantizer 2 is done with 3 switches (1-0-1 type with middle position). From the factory quantizer 1 is working in the semitone mode. But there is a jumper on the pc board that can be changed so that even quantizer 1 uses the same scale as quantizer 2.

For each quantizer the following in/outputs are available:

- Control voltage input (CV In): The input for the continuous voltage to be quantized
- Control voltage output (CV Out): The output of the quantized voltage
- Trigger input (Trig.In): If this jack is left open the quantizer is working permanently. If a rectangle voltage is applied quantisation happens only at the rising edge of the signal (e.g. from an LFO or MIDI-to-Sync interface). Thus the quantizing can be synchronized with other events
- Trigger output (Trig.Out): Whenever a quantisation happens (i.e. a new voltage is generated at the CV Out) a positive pulse occurs at this output. It may be used to trigger an envelope generator (ADSR) or for triggering other modules (sequential switch A-151, trigger divider/sequencer A-160/161, trigger delay A-162, ...). If none of these functions are used the jack is left open

On top of that the A-156 is provided with a common transpose CV input having an additive effect on both quantizers. This input is quantized in semitone steps. A typical application is the transposition of a sequence generated by the A-155 by a second control voltage (e.g. coming from the MIDI-CV interface A-190).

Typical applications:

- Quantizing the CV sequence generated by an A-155 (semitone, only major scale, only minor scale and so on)
- Quantizing the voltage coming from the Trautonium Manual / Ribbon Controller A-198, Theremin A-178 or Light-to-CV module A-179 to get accurate semitones or major/minor scale tones
- Arpeggio-like effects with LFO, random, noise, envelope generators as CV sources (for negative or symmetrical voltages an offset must be added, e.g. with the offset/attenuator module A-129-3, to obtain positive voltages for the A-156 input)
Read more
 1 in stock $119.42
Click for better price!
quote 577757
Items 1 to 20 of 20 on page 1 of 1

Filter

Saved Searches
Save current search
Release Date
Featured
Close